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Abstract

Simulated annealing is a popular Monte Carlo algorithm for combinatorial

optimization. The annealing algorithm simulates a nonstationary finite state

Markov chain whose state space 0 is the domain of the cost function to be

minimized. We analyze this chain focusing on those issues most important for

optimization. In all of our results we consider an arbitrary partition

{I,J} of 0; important special cases are when I is the set of minimum cost

states or a set of all states with sufficiently small cost. We give a lower

bound on the probability that the chain visits I at some time <.k, for k

1,2,..... This bound may be useful even when the algorithm does not

converge. We give conditions under which the chain converges to I in

probability and obtain an estimate of the rate of convergence as well. We

also give conditions under which the chain visits I infinitely often.

visits I almost always, or does not converge to I, with probability 1.
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1. Introduction

Simulated annealing, as proposed by Kirkpatrick [1], is a popular

Monte-Carlo algorithm for combinatorial optimization. Simulated annealing is

a variation on an algorithm introduced by Metropolis [2] for approximate

computation of mean values of various statistical-mechanical quantities for a

physical system in equilibrium at a given temperature. In simulated

annealing the temperature of the system is slowly decreased to zero; if the

temperature is decreased slowly enough the system should end up among the

minimum energy states or at least among states of sufficiently low energy.

Hence the annealing algorithm can be viewed as minimizing a cost function

(energy) over a finite set (the system's states). Simulated annealing has

been applied to several combinatorial optimization problems including the

traveling salesman problem [2], computer design problems [2].[3], and image

reconstruction problems [4] with apparently good results.

The annealing algorithm consists of simulating a nonstationary

finite-state Markov chain which we shall call the annealing chain. We now

describe the precise relationship between this chain and the finite

optimization problem to be solved. Here and in the sequel we shall take R

to be the real numbers, N the natural numbers, and N0 - N U {}, and we

shall denote by JAl the cardinality of a finite set A. Let 0 be a

finite set, say f) - {I..... 2j}, and Ui E R for i E Q; we want to

minimize Ui over i E £. Let Tk 0 for k E N0 0 shall be the

state-space for the annealing chain and we shall refer to {Ui iEO as the

energy function and {TElk)Io as the anneallng schedule of temperatures.

Le (k) r(~Let " (k)I (a row vector) be a Boltzman distribution over the
i i£

energies {Ui}iE f£ at temperature Tk. i.e.,
-Ui/Tk ci

lrk)" - e i 6 2,* k'W e -Ui/T k

for all k E N 0. The annealing chain will be constructed such that at each

des
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time k the chain has f(k) as its unique invariant distribution, i.e., at

each time k the annealing chain shall have a 1-step transition matrix
" (k.k+l) - P (kk+,) such that f - is the unique solution of

* ij I E
the vector equation P , if.The motivation for this is as follows.

Let S be the minimum energy states in 0. Now if Tk -* 0 as k - then

1 , if i E S"

)S )

0 if i S*,

as k - , i.e., the invariant distributions converge to a uniform

distribution over the minimum energy states. The hope is then that the chain

itself converges to the minimum energy states.

We now show how Metropolis constructs a transition matrix P(k,k+l)

with invariant vector f(k) for k e N 0. Let Q - [qijiJ be a

symmetric and irreducible stochastic matrix, and let
qj_(U_U)/Ti
q(je ) k if U , Ui.

p(k~k+l) ijIf Uj : Ui , J 0 1,

1 _ (k ik+l) if

for all iJ j 0 and k E [N0 Then it is easily verified that 7 (k) ,

and) some~l initial (k) r i:
p(k~k+1) for all k E N 0 . In fact, p(k+) and f() satisfy the

reversibility condition

p(k,k+l)i(Ik), (k) (k,k+l) (.Ec+.ii ii I i, jD

for all k 6 fN0 * Let {xEkEN be the annealing chain with 1-step

transition matrices {P(k'k+l)}kEo and some initial distribution,

constructed on a suitable probability space (MA.P). Let p - P -

for i E f and k E N0'

The annealing chain is simulated as follows. Suppose Xk - i E 0. Then

generate a random variable y E 0 with P(y J} qJ for J E 0.

43



Suppose y - 3 E 0. Then set

-(U -Ui)/Tk

xk+1 - J if Uj Ui with probability e ,

i else.

Hence we may think of the annealing algorithm as a "probabilistic descent"

algorithm where the Q matrix represents some prior distribution of

"directions", transitions to same or lower energy states are always allowed,

and transitions to higher energy states are allowed with positive probability

which tends to 0 as k-.w (when Tk * 0 as k-. ).

Even though simulated annealing was proposed as heuristic, its apparent

success in dealing with hard combinatorial optimization problems makes it

desirable to understand in a rigorous fashion why it works. The recent works

of Geman [4], Gidas (5], and Xitra et. al. [6] have approached this problem

by showing the existance of an annealing schedule for which the annealing

chain converges weakly to the same limit as the sequence of invariant

distributions (k)} , i.e., to a uniform distribution over S . In each0!
case a (different) constant c is given such that if Tk c / log k for

large enough k e N and Tk + 0 as k-.o. then
1
-- if i E S
Is I

0 if i S

as k - . Furthermore, under an annealing schedule of the form Tk - T /

log(k+k0 ) where T ? o and k0  .1, Mitra at. al. obtain an upper bound on
lp _ for k E N. The results of Geman, Gidas, and Mitra et. al.

are an extension of weak convergence results for stationary aperiodic

irreducible chains (7] and certain nonstationary chains [8], and are useful

in proving ergodic theorems (which Gidas does). However, if one is simply

interested in finding any minimum energy state than weak convergence seems

unnecessarily strong. In a recent paper Hajek (9] investigates when the

-4-
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annealing chain converges in probability to S Hajek gives an expression

for a constant d such that under the annealing schedule Tk - T /.log k

for large enough k F N, Pxk E S } I as k- iff T 2 d.

Furthermore the condition that Q be symmetric is relaxed to what is called

"weak reversibility".

In this paper, we analyze simulated annealing focusing on optimization

issues. Here we are not so much interested in the statistics of individual
S

states as in that of certain groups of states, such as the set S of

minimum energy states or more generally a set S of all states with

sufficiently low energy. In all of our results we consider an arbitrary

partition {I.J} of 0. and examine the behavior of the annealing chain

relative to this partition; we obtain results for I - S as a special case.

We investigate both finite-time and asymptotic behavior as it depends on the

Q matrix and the annealing schedule of temperatures {TEEo

In Section 2 we establish notation. In Section 3 we examine finite-time

behavior. We observe that since we may keep track of the minimum energy

state visited up to time k, it seems more appropriate to lower bound the

probability of visiting S at some time n < k. rather than the probability

of visiting S at time k. Under an annealing schedule of the form

Tk - T / log(k+kO) where T , 0 and k0  1 1, we obtain a lower bound on

P{x n e I, some n < k} for k E o*0 For large T this bound converges to 1

exponentially fast. For small T the bound converges to a positive value

0. Hence the bound is potentially useful even for small T when the

algorithm may not converge. In Section 4 we examine asymptotic behavior.

First, we show that under suitable conditions on Q there exists a constant

U such that if Tk > U / log k for large enough k E N, then the

probability that xk E I infinitely often is 1. Second, we show that under

suitable conditions on Q if T ) U and Tk - T / log k for large enough

&EN, then xk  converges in probability to I. Infact, we show that

P{xk E I} -1 - O(k-T/T) as k - , where T 0 does not depend on T and

-5-



only depends on Q through the set {(ij) E 0 X 0: qiJ 0) of ordered

pairs of allowed transitions. Third. we show that under suitable conditions
*

on Q there exists a constant U, such that if U < T < U* and Tk - T /

log k for large enough k E N. then the probability that Xk E I almost

always is 1. Hence we obtain three results about the convergence of the

annealing algorithm with increasingly stronger assumptions and conclusions.

In Section 4 we also obtain a converse which gives conditions under which the

annealing algorithm does not converge: we show that under suitable conditions
*

on Q that there exists a constant W such that if f > 0 and Tk

(w -E) / log k for large enough k E N, then the probability that xk e I

infinitely often is ( 1. Finally, we briefly compare our results to Hajek's

work and indicate some directions for further research. We remark that

Sections 3 and 4 are essentially independent of each other.

41
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2. Notation and Preliminaries

In this section we describe notation which is necessary to state our

results, give a few examples of this notation, and discuss a technical

condition which we shall often impose in the sequel.

Let U- min Ui and U max Ui. Then S (i E0:Ui U} and S -

iEQ iEO
{i E 0: Ui  U) for some U < U < U. Following standard notation, we shall

define P ) - fp k+d) ]I to be the d-step transition matrix

starting at time k. i.e.,
p(k,k+d) - p(k,k+l) (k+d-l,k+d)

In defining the annealing chain {xk}kEM in Section 1 we assumed that

the stochastic matrix 9 was symmetric and irreducible. This assumption is

unnecessarily strong for our purposes. If {I,J) is a partition of 0 and

we want xk  to converge to I as k -. then we need only require some

kind of condition which guarantees transitions can be made from J to I.

and possibly another condition which makes transitions from J to I more

. likely than transitions-from I to J. depending on the mode ;f convergence.
4'

we will be more precise later in Section 4; for now assume Q is an

. arbitrary stochastic matrix. For each itJ E 0 we shall say that i can

- reach j if there exists a sequence of states i - io.i1 . ... i - J such

that qi 0 for all n - 0..k-i; if U e R and Ui 5 U for all

n - 0,...,k than we shall say that i can reach j at energy U.
Let k E Mot and for every d E N and iJ E 0 let A(d) be the

sequences of states i - iO .  ,id  j such that ,(k~k4-) ' 0 for all n -d. . - J uhta in ni
ni n+1

0,...,d-1. A are the sequences of allowed transitions of length d from

i to j at positive temperature (we defined Tk , 0 for all k E N 0 ). For

every d E N and i,j E 0 let K(d) be the sequences of states i -
ij

Si0 .... id - J such that qin 0 for all n - 0. d-1. We might
n n+o

think of M(d) as the sequences of allowed transitions of length d from iij .(d) (d)
to J at infinite temperature. Note that Xj c j) and the elements of



A(d) \ Xd) are precisely those sequences which have a self transition, say

from s - s, with qss - 0 and qst , 0 for some t E 0 such that Ut

Us Now for d E N. i.J E 0, and X E A(d let

d-1

U(X) - max[O, Ui -UinJ,
n.U n+1 n

VWA - max max[O, U in lUio],
n-O ... d-1n+1

W(W) - max max(O, Ui n-Ui I.
n-O.....,d-1 n+1 n

Also let

min U(X) if A(d)
(d)

k Aiu(d)

M if A (d) #

for all d E IN, and

(d)(d
U - inf U - min U (2.1)'J deI 'J d<l(ij

for all i,j E (. Similarly define vij Vij and V(J W iJ by replacing U
U(d)

by V and W. respectively, in the definitions of Ui 'Uij above.

Finally, if one or both of the indices i,J E 0 are replaced by I,J c 2 in

,, these definitions then an additional minimization is to be performed over the

elements of IJU e.g., U ( _in U),mn W. etc. Note that
em sf .i JE6 iEI,JEJ j
(du()(d) V(d) ,.(d)

if we replace Md) in the definitions of U vd and Wid

then the values of these quantities will in general be changed; however the

values of U V and V will be unchanged. We shall refer to U
1j, ii, ij zy

U(d) ) as the transllon energy (d-step transition energy) from x to y,

for x,y E Q U 2

Example 2.1 In Figure 2.1 we show a state transition diagram for 0 -

(1.....,5} where transitions are governed by the Q matrix, i.e., an edge

from i E 0 to j E 0 is shown iff qij , 0, in which case the edge is

labelled with the value of qiJ. To obtain the state transition diagram for

the corresponding p(kk+l) matrix, k E [0o simply add a self-transition

loop to every state which can make a transition to a higher energy state (if

-8-



one is not already present) and relabel the edges appropriately. The

self-transitions which are allowed under p(kk+l) but not under Q are.

depicted by broken loops. Also observe that the ordinate axis gives the

energy of the corresponding state. To illustrate the notation we have

A( - {(1.1,23.4.5).(1,2,3 3 4 , ),(1.23,4,5.5. )}15
-(5) _ {(1,1,2,3,4,5)}J, ~15 " ''

U15 " 15 2-UI + - 4,

5- - u4-u1 -

W -() U-U 1 - 2. 4
-. V15 15i wl~5 " w )15  " 2-u " .

Let {I,J} be a partition of 0. In Section 4 we will often impose the

following condition: there exists d E IN such that the d-step transition

energy from J to I equals the transition energy from j to I, for all

J E J U J) - UI for all J E J). This will allow us to get lower bounds

on the quantity Pxk+1)d I I xkd - J} for all j E J. It is easy to show

that if I - S then this condition is satisfied. Infact, in this case there

exists do < Iii such that for every d > d U-(d) _ Uj for all 3 E J.
01 31 31

Example 2.2 In Figure 2.2 we show a state transition diagram for 0 -

(1,...7} (see Example 2.1). Let I - S - E. Q 0: Ui : 2} - {1,2,3}, J -

(3,...,7}. Then

u (d). u(d) _ U -d) - 0, d > 1,31 U31 61 " 61 71 71 "U
u (d )  U 1, d >2.

u(d) U41 U4 1 -2 >
and so dr, - 3. Note that if we replace A by i in the definition

of (d) for iJ E 0, then there does not exist d E N such that u (d)

UjI for all j e J. 4

.f..



3. Finite-time Behavior

From the point of view of applications it is important to understand the

finite-time behavior of the annealing algorithm. Certainly it is interesting

to know whether the annealing algorithm converges according to various

criteria, and this information may well give insight into finite-time

behavior. However this information may also be misleading for the following

reasons. First, the finite-time behavior of the annealing algorithm may be

quite satisfactory even when the algorithm does not converge, which may well

be the case for typical applications. Second, the finite-time behavior of

the annealing algorithm may not be clearly related to the convergence rate

*" when the algorithm does converge, as the following example indicates.

Example 3.1 It is a simple consequence of Proposition 4.1(u1) that if

* Q is symmetric and irreducible, T ,0. and Tk T / log k for large

enough k E N, then there exists aa 0 such that

P{Ik E S) < 1 - t k large enough.

Now let P be the matrix obtained from P(kk+1) by setting Q - [1/101 ]

and Tk - 0, and let {yk kE O, Yk E 0, be a stationary Markov chain with

1-step transition matrix P and some initial distribution, constructed on

(MA,P). Since S is just the set of persistent states for this chain, it

i ell-known that there exists b > 0 and 0 < p 1 1 such that
k

P{yk E S } > 1 - bp , k E N0 .

Hence assuming that T is chosen such that P{xk E51-*S 1 as k - then

the rate that P{xk E S .- 1 is at best polynomial while the rate that

P(yk E S 1 is at worst exponential. Of course we would hope that the

finite-time behavior of the annealing chain would be better than the

stationary chain, for appropriate choice of Q and T. 4

We now address the question of what is an appropriate criterion to

. assess the finite-time behavior of the annealing algorithm. For our

* purposes, we are simply interested in finding any state of sufficiently low

energy, i.e., an element of S. Hence it seems reasonable to lower bound

- 0 -
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P(xk E S} for k E N0. However, we observe that by just doubling the

annealing algorithm's memory requirements we can keep track of one of the

minimum energy states visited by the chain up to the current time. In this

case we are really interested in having visited S at some time n - k. as

opposed to actually occupying S at time k. Hence it seems more

appropriate to lower bound P{x n E S. some n < k) for k E IN0.

We start with a proposition which gives a lower bound on the d-step

transition probability pJk+d) in terms of the transition energies U(X)
(d)

of sequences X E dij . for iJ E 0.

Proposition 3.1 Let d E N. T 0 0. k0 > 1. and Tk - T / log(k+k0 )

for k E N. Then for every i.j E 0

(kk+d) > r(X)(k+ko+d-1)-U(X)/T, k E N (3.1)

ij~ Xe Cd) 0O
XEij

where r(X) > 0 is given in (3.2).

Proof Let

(k) qlJ if j i,

r J "
_(k.k+l) if J -

Pii

for all i,j E 0 and k E N0. Also for every i,j E 0 and X - (i0 1. id)

A (d) let
i n(X) - max[O, Ui n+-Ui n, n - 0.....d-1,

d-1 (k+n) , k E
rk() " n-0 n n+1

and

d-1
r(X) - t" r( )  0. (3.2)

n-0 n n+1 hence (k)

Since Tk is strictly decreasing, Pii and hence rij are

nondecreasing, so that rk(X) r(X) for all k E N0" Hence for every ij

(kk+d) d _(k+nk+n+l)

iJ " (d) n-(i0 .... lid)EA ij n- n n l

• ---. .- .- .. -. ..- v ---.- --. .-..< .-: -' .-, -v -. .- -. .-..-' ,. -: -. , -. .. ' , -. .-= , '. .' -- ..-i -', -' '- -..' ': '. " .', ' '. .- .- .- .- '. '



d-1 (k+n) F 1
(d)T7 exp 1 a

(i0 .... id)EA(d n-O n n+ k+d-1 n+lj n

d-1 AnW

- (d) r kCX) expl -2 , Ln
XEA ij n-O

_ (d)k(>k) exp[ 0 gI~+d-1) d-1

(d) 
T 6n(X)

XEAij n-O
- . r(X)(k+ko0+d-1)-U_ )T k E [N0"

Remarks on Proposition 3.1 (1) In Figure 2.1 we have

r((1,2,3,4.,5)) - q1 2q2 3q3 q4  - 1

-23P 3  q34q4 5 - 91 - 7T + M

r((2,3.34,55) - q (0q,1) 11
(0,14555 - 9 k 7

(2) Fix k e (N0  From (3.2) it is easy to see that r(X) is

nondecreasing as T decreases or k0  increases, which reflects the fact

that self-transitions in the sequence X have larger probability at lower

temperature. On the other hand, (k+ko+d-l)-U(X)/T 1 0 as T 1 0 or k0 T

(if U(X) 0), which reflects the fact that transitions to higher energy

states in the sequence X have smaller probability at lower temperature.

These two phenomena compete with each other in the lower bound (3.1).

The next theorem gives a lower bound on P{x n E S. some n _ k} for k E

1 0  by setting I - S.

Theorem 3.1 Let {IJ} be a partition of 0. Also let d E N., U -

max U T 0, k0  1, and Tk - T / log(k+k0 ) for k E N Then
j _J

P{xnd E J, n- 0.....k
a n1-aexp a (kd +n1-al i U*exp a-d-1---y 0 ep1- d~l + n0  ifT1U

n 0 + nO if T - U,
ex - exp[ n 0(kd n

exp[ a a 1 ______ if T < U. (3.3)

0 0

- 12-



for all k E No. where a - U/T, n - k0+d-1, and a , 0 is given in

(3.5).

Note In the statement of Theorem 3. 1 and in the proof to follow we

suppress the dependence of the constants U and a on d. Later, we shall

make this dependence explicit by writing U(d) and a(d).

Proof From Proposition 3.1 for every iJ E 0

P J(kk+d) >_ (d )(k+kO +d-)-U(X)/T k E N0
XEAij

where r(X) ' 0 is given in (3.2). Hence

k-i
P{Xnd E J. n - 0 . k) : T- max P{x(n+l)d E J I xnd -J}n-0 JE J

k-1-I min (rid(n+1)d)]

- T mm 2 3ji~ 'n-0 JE,. I
k-1

-i _______ k EIN0 , (3.4)
U-0 (nd + no)"I

where
a--

a m)n rCX) , 0. (3.5)JEJ (d)iI XA ji
UCX)<U

(if U- let a be any positive real). Since i+x < ex  for all X E R.

we have
k-1

7 1 - a n < exp[- a (n - exp- a 1 dxn- n)a nO (nd )a 0 (xd + na

exP n 0J ezp (kd + no)i-a] if a 1

no 0 a/d
n+n if a - 1, (3.6)

for all k E N. Combining (3.4) and (3.6) completes the proof.

Remarks on Theorem 3.1 (i) Let I - S - (5), J - (1,2.3.41. and d

- 4 in Figure 2.1. Then U - UW) - 4 and
15

a - min ( r(X).
J {(1.2,3, ) (4)'XEAj .

Now it is not hard to see that the minimum is obtained by 1 - or 2. Using

-13-
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the values of r(X) computed in the first remark following Proposition 3.1

we have

a -1 min[1, 4 - 2 1 1

(2) Note that

P{xnd E J, n E [ - lim P(xnd E J, n - 0...k}

o if T>TU,

exp - a . 1 if T ' U,
n0

so that the bound is potentially useful even when T ( U.

(3) Fix k E N0* It will be convenient to analyze the dependence of

the upper bound (3.3) on T and k 0  in the form

PIxnd E J, n - 0.....k) } exp[- a I d 1 -adx) (3.7)0 (xd + no0)

(see (3.6)). Since r(X) is nondecreasing as T decreases or k 0

increases, we have from (3.5) that a is nondecreasing as T decreases or

k 0  increases, which reflects the fact that self-transitions in sequences of

transitions from J to I have larger probability at lower temperature. On
k

* the other hand, 1 1 dx 1 0 as T 1 0 or ko0 ? (if U 0).'JO (xd + no)

which reflects the fact that transitions to higher energy states in sequences

.1 of transitions from J to I have smaller probability at lower temperature.

Since these two phenomena compete with each other one could consider

minimizing the r.h.s of (3.7) over T and k 0  to obtain the best bound.

(4) We can generalize Theorem 3.1 by replacing U - max U(d) with U,
JEJ

U (if U' < U then a - 0 and the upper bound (3.3) is useless). Since

a and a are both nondecreasing with increasing U' one could consider

minimizing the r.h.s. of (3.7) over U' as well as T and k 0  to obtain

the best bound (see previous remark).

In order to apply Theorem 3.1 we must obtain suitable estimates for the

constants U(d) and a(d). We are currently investigating this in the

context of a particular problem.

- 14 -



4. Asymptotic Analysis

In the previous section we pointed out some of the difficulties

associated with using the asymptotic behavior of the annealing algorithm to

predict its finite-time behavior. Nonetheless, it is certainly interesting

from a theoretical viewpoint to perform an asymptotic analysis, i.e. to find

conditions under which the annealing algorithm does or does not converge

according to various criteria, and when the algorithm converges to estimate

the rate of convergence as well. In this section we address these questions,

and then briefly compare our results to Hajek's work and indicate some

directions for further research.

We first address the question of what are appropriate criteria to assess

the asymptotic performance of the annealing algorithm. For our purposes, we

are simply interested in finding any state of sufficiently low energy, i.e.,

an element of S. Hence we shall investigate conditions on the Q matrix

and the annealing schedule of temperatures {Tk )k0 under which one or more
0

of the following is true:

(W) P{xk E S i.o.} - 1.

(ii) P~xk E S) -.1 as k -

* (iii) P{ZIL E S a.a.} - 1.

Here "i.o." and "a.a." are abbreviations for "infinitely often" and "almost

always", i.e.,

( E Si.o.} - "m { z s} n u (X Es}
k-#- n-i k'n

and

{Xk E S a.a.} - li( k E sI - U n {k E s
k-i. n-i k~n

Since (c.f. (7])

P{xk E S a.a.} < lim P(k E S) T P{ E S) 5 P{ - E S i.o.). (4.1)

it follows that (i),(ii), and (iii) are increasingly strong results and so we

expect increasingly strong conditions under which each is true. We are also

interested in obtaining the rate of convergence in (ii) as well as conditions

- 15 -
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under which (i).(ii), and (iii) do not hold.
We start by giving a proposition which establishes asymptotic upper and

.(k.k+d) a

lower bounds on the d-step transition probability pk d as k in

terms of the transition energy Uij, for i.j E Q.

Proposition 4.1 Let d E N and T 0 0. Then there exists aij - 0

for ij E 0 such that each of the following is true:

(i) if Tk s T /log k for large enough kG IN then

IT .Uij/T P (k.k+d) <a
ke iJ - j

for all iJ E 0,

(ii) if Tk  T /log k for large enough k E N and Tk .0 as k

Sthen

lim k Uij/T (kk+d) >a
k-*m j ij

for all ij 6 0 such that U d) U
ij j

(iii) if Tk - T / log k for large enough k E N then

p(k.k+d) as k

for all ij 6 0 such that U (d) UJ

Proof We prove (3); the proof of (ii) is similar and (iii) follows

from (i) and (ii). So assume Tk 5 T I log k for large enough k E N and

let

rk) - ~qiJ if J i.

J (k,k+l) if J - i.

for all i,j e 0 and k E N. Also, for every i,J E 0 and X - (i0  .. id)

E Cd) letGij
AnCX) - maCO, Uin+l-UIn], n - 0.....d-1.

d-I (k+n) 0. k E N,

rkCX)TU i 0,kEN
U-0 n n+1

and

r(X) - lim rk(X) - sup rk(X) 0.
k-*- kEIN

- 16 -
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That the limit exists in the definition of r(X) and is equal to the

supremum is a consequence of lim p(kk+l) - sup (k,k+l) (since Tk - 0 asi il Pii
k-* k..IN

k - -). Hence for every i,J E 0

(k,k+d) d-1 (k+n, k+n+1)

iij "W6.( n-0 n n+lU.0 ..... id)n ij
d-1 (k+n)

(0 .k. )eA I n-0 n n+1 Tk+d-I n+1-n
dEd i

" 'Aj d rk(X) ezP[ - i An( X)n-OC lareTenugh
d-1

r- d) ) exn-

(d) +rk(X
X L(A ) n-0 ~ j~ U~J7

XEAij d)d r rkCX)

U rx(Ui3  U (>U J

,d as kk-U,,

where

r +(d rCX) 0

XEE~ij k EEii

", U(x)-Cd)

" ()- (d) U(X)U(d

(i d - -let aj be any positive real).

iji

The following theorem gives conditions under which P{xk 6 S i.o. } - 1

by setting I - S.

Theorem 4.1 Let ei,J) be a partition of 0 and assume

Ca) there exists d 6 IN such that the d-step transition energy from 3

to I equals the transition energy from 3 to I, for all 3 E J
(U-d j for all 3 6 J),

(b) every 3 e J can reach some i e I (max ®

a r(X ) 0

- 17 -
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Also let U - a U , TE >_ U / log k for large enough k E N. and
JE J

Tk -* 0 as k - .. Then P{xk E I i.o.) - 1.

Proof From Proposition 4.1(11) there exists a , 0 such that
p(k k+d) a
PiJ' > , k large enough,

for all i. J E 0 such that UJ(d) U Hence for every large enough k E N
ij ij.

P{xnd E J, n > k} < T7 max P{x(n+l)d E J I xnd "J)
n-k JEJ

- 7 [1 - mi (ndCn+l)d)1
n-k JEJ i pI
n-k I

5 T 1 - mi~n a
n-k JE I UI/U

iGI), Cnid)

by (a). Since the infinite product diverges (to zero), P{xn J, n _> ki -

0 for all k 6 IN, and the theorem follows.

Remarks on Theorem 4.1 Cl) In Figure 2.1 let I - S - (51, J -

{1,2,3,4}. Then U - U-- - 4.

(2) Condition (a) was discussed in Section 2. and is satisfied for I -

* S.

Our next theorem gives conditions under which P{xk 6 3} -. 1 as k ®

*by setting I - S, and obtains an estimate of the rate of convergence as

* well. We shall need the following lemma, the proof of which can be found in

the Appendix.

Lem, Let a 0 , 0 < a ' 1, , a, ko.m0 6 IN. and a/k ~ 1<. Then

aii jbl-

Ci) F j _ aj O. ), as k - o,

- 18 -
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(ii) for every n E N0

T-T 1 -a -O-),as k ®
mko Q-m+m 0

where Y - -a 0.

Theorem 4.2 Let {I.J} be a partition of 0 and assume

(a) there exists d E N such that the d-step transition energy from J
.1•

to I equals the transition energy from J to I, for all J E J

(U" - U for all J E J),

(b) every J E J can reach some i E I (max U ')

J

(c) the transition energy from I to is greater than the

transition energy from j to I, for all j E J (min[U I-U J 0).
JEJa *

Also let U - max U .<, T , U , and Tk - T / log k for large enough k
J6J

E N. Then P{x k E I} -# 1 as k -. Furthermore, if we assume

(d) there exists i E I which can reach some J E J (UIj )

then

P{xk E I} - 1 - O(k-y/T). as k -,

where T - min[U -U3 1 ] (0 < - by (c) and (d)).
JEJ

Proof From Proposition 4.1 there exists a1 ) 0 such that

(kk+d) al
,ij k E I, (4.2)

k

for all i.J E Q. Also from Proposition 4.1 there exists a2 ) 0 such that

p(k,k+d) a 2
Ck, k kd/ k large enough, (.3)

for all i,J E 0 such that UJ(d -)U In the sequel (4.2) ((4.3)) will beij Uij.

used to upper (lower) bound the probability of transitions from I to J (J

to I).

Let J J ... Jr be a partition of J such that UjI - UJrI  for all J

E Jr' and U rI C U~sI  for all r s. For example, in Figure 2.1 let I -

S - {(5, J - {1,2,3,4}, so that J1 (4, J2 (2,3), and J {}.

- 19 -
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r

Also let a- UiT r " U rT, r Ur /T, Kr - Js, and kr -

JKr l , for r - 1...r O . Note that a - a 1 1 and K - J. Finally let

p(J.m.nr) - P{Xkd E Kr. k - m+i......n.rXmd J

and

a(i.j,m,nr) - P{Xkd E K r , k = m+l,....n-i ; xnd J IXmd

for ij E 0. m,n N . and r = 1,.. . ,r rO  Then for every k 0 E N we can

write

P{Xkd E J} k) + p(k) (4.4)

where

(k) - (kod)
P (k). }pj p(j.kok,r) (4.)

JeJ

and

k-i
p(k) . (m md) p (md,(m+l)d)
2 2 2J '0~l'2'mO)(

m-k iEI JEJ
0

~(k)
for all k - ko,k0 +1 ..... In words, Pk1 is the probability that Xnd

for all n - k0 .... k. and P2k )  is the probability that xmd E I for some

m = k0 ... k-i and Xnd E J for all n - m+l,....k. We can further write

S(k) p(k) + p(k) (4.6)
2 3Z 4

-where

k-1 ro0

P(k) -k p P(md) p(m d (m+ l )d) (jm+l k r) (4.7)

m=k 0 iEI r-1 JEJ

and

k-2 k ro0
p(k) - - p(md) r a(i.j,m.n.r-1) p(jnk,r), (4.8)

4
m-k 0 iGI n=m+2 r-2 JEJr

for all k - ko,ko+ ..... .. In words, p(k) (P (k ) ) is the probability that

when Xnd makes the transition from I to J at time m it visits at time

m+i (at some time > m+2) the state in J with the largest transition

energy back to I amongst the states in J that are visited from time n -

i..2k.

- 20 -
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The motivation for the decompostio in (4.6) is as follows. Suppose we

work directly with (4.4). Observe that the P2k )  term only keeps track of

how the chain makes transitions from I to J but not how it stays in J.

In this case we are forced to work with the "worst case" scenario where the

chain makes minimum energy d-step transitions from I to J (with energy

U I) and maximum energy d-step transitions from J to I (with energy max
JEJ

(k)_
Uj). In order to show that P2  - 0 as k it seems clear that we

would have to require U - max U 0. On the other hand, in the p(k)

and P(k) terms of (4.6) we not only keep track of how the chain makes

transitions from I to J but also how it stays in J. In order to show that

p 3k, p) 0 (and consequently P(k) 2 0) as k it is not hard to see

that we need only require min[Ulj-U j] 0, which is guaranteed by (c). We
JEJ

now proceed with the details.

We start by upper bounding P1k). Using (4.3), for every large enough

Sk0 E N we have

k-1
p(jo,ko,k,ro) 5 T7 max P(x(2,1)d E J I X2d -J)

Q-k 0 JEJ

- k 1 - min (Qd,(2+1)d)2 ~ k JiQ-k JEJ iel

< T-" - mmn

Q-k 0  JEJ iGI, (2d) U J

u(d)_U

Ji i mJI

0 iEi, (2d) J

U (d)_Uii ji

< Jo E J, k - k0 ,k 0 +1...
q-k 0  

(Qd) a

r - .. rO , (4.9)

by (a). Combining (4.5) and (4.9) gives for every large enough k0 e M

(k) < 1-2 k - kok+1 (4.10)

Q=k ( d). 0

-21-
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Since a2 ) 0 and a ( 1 we can apply Lemma (i) to (4.10) for every large

enough k0 E N to get

P(k) O(e-b(kd) a.- ), as k -. (4.11)

where b - a2 /(i-a) ) 0.

We continue by upper bounding P3 and P4 First, by almost the

same reasoning that led to (4.9). for every large enough n E N we have

k-i a.
p(j,n,kr) 5 T7 1 - ' j E J, k - nn+1 ....

2-n 
(d) ]

r - 1. rO. (4.12)

Next, suppose that

Xmd - i,

Xk E Kr, for k - (m+l)d..... (n-1)d,

Xnd - J,

for some i,j E (0, m E N, n - m+2,m+3...., and r - 1..... r' Then clearly

there exists k E IN (I < k < min~nm-l,kr]), intermediate times m , i I

<... ik-1  n-i, and distinct intermediate states Jl .... Jk E Kr  such that
, -i.

Xmd X(m+l)d =

-i 2id -JQ X(i+l)d J for Q - 1-.k-1,J'S.i lQ _ l '. .

(nl)d - Jk' Xnd - J "  (4.13)

Let A(i,j,m,n,r;k,ii....ik J be the event defined by (4.13).

Then we have shown that

- d(i,J,mn,r) < P{A(ij.mn,r;k.i1 ... iki1,Ji .... Jk) }

J1. ..... Jk.

<k 2 r (n-m-2) k r max P(A(i,j,mn,r;k,i1 .....ik l-jI.... jk)} '
11 ..... i k -1

Jl'....Jk 
k

i.J E O, n - m+2,m+3......m IN.
r - . . 0 '

- 22 -



Now using (4.2) and (4.12) it is not hard to show that for large enough M E

P{A(ij.m,n,r:k,i1 .  ik1lJ....

al n-2 a

1 17- 1 2 _ -

(md) iJ -m+k (2d) r

and consequently

(n-m-2)kr-1 n-2 1 a2 1
a(i.J,m,n,r) < c T r j i J E1 dU ij /T a ' k a

(md) m+kr (Qd)

n - m+2,m+3,..... r - 1. rO .  (4.14)

where c I  is an unimportant constant. Combining (4.7),(4.8).(4.12). and

(4.14) gives for every large enough k 0 E N

( k) o(k)

3 4

r0 k-i

o k-i k

r-2 m-k 0  (rd) r-1+l (Qd)a

(4.15)

where c2, c3  are unimportant constants. Since a2  0, a r < aro - a 1,

and (/r-ar)T - iJ -UJrI - min (Uj-U ji] 0, for all r - 1.r O  we can
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apply Lemma (ii) to each term in (4.15) for every large enough k G [ to get
r0

-(_r- r) T IT),k( k ) . O~ r )r =O(] -T as/T
O~k )). as k -(4.16)

r-1

. where the last equality follows from

T - min[U-U I - rmin rU - UrI - min -(rar)T.
JEJ jr- i..... 0 IJr jrI r-l,..... r0

Finally, combining (4.4),(4.6),(4.11), and (4.16) gives
P{rkd E J} - bkd) ) + Ok-T, as k (4.17)

Similarly we can show that in (4.17) P{ E E J) can be replaced byP(kd

P{Xkd+k0 E J}, for all k0 - 0. d-l. Hence

bkl-a -/T)
P{Xk E J) - O(e- + + O(k-T as k -, (4.18)

and the Theorem follows since b,7 , 0 (and T if (d) is true).

Remarks on Theorem 4.2 (1) In Figure 2.1 let I - S - {5},

J - {1.2,3,4}. Then U - U15 - 4 and T - U 51-U15 - U1-U 5 - 1.

(2) Condition (a) was discussed in Section 2 and is satisfied for I -

S.

(3) Condition (c) is satisfied for I - S and Q symmetric since

min[Uij-Uj I min U -U I - min [U -Ui] , 0.J J i iI,JEJ U i j - j  ieI,JeJ

(4) When condition (d) is not satisfied (T - c), (4.18) shows that

_bkl-a
P{xk e I} - 1 - O(e ), as k - ,

where a - U /T and b 0. What we have actually shown is that

1k-a
P{xk E I, some n < k) = 1 - O(e as k- -

and this is valid when only (a),(b), T > U , and Tk ? T / log k for large

enough k e N are assumed. Theorem 4.1 can be deduced from this by taking

T - U . It is possible to lower bound b in terms of the a 'S from
ii

Proposition 4.1, but we shall not do so here.

(5) We can get a somewhat better estimate of the rate of convergence as

follows. Let I be the collection of subsets of I such that 10 E I iff

the partition {10,JO} satisfies conditions (a),(b),(c), and (d). Assume

- 24 -
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that 1 * and let
7(1.) T(I O)

* max
U (Is) 10 E U (1)

-r r(I,), T - T (I*). T ' T , and T - T / log k for large enough k

E N. Then

P(xk E I) - 1 - O(k-1 T) as k

The corollary to the next theorem gives conditions under which

P{x k e S a.a.} - 1 by setting I = S.

Theorem 4.3 Let {I,J} be a partition of Q and assume that the

transition energy from I to J is positive (UIj , 0). Also let U, - UJ

0, 0 0, and Tk < (U,-e) / log k for large enough k E M. Then

P{xk E I a.a.} - P{x k E I i.o.}.

Proof Let T - U,-6. Then from Proposition 4.1(i) there exists a 0

such that

(k,k+l) aiJj -< k C ,

for all i,J E 0. Hence
.(k,k+l)

P(xk E 1. x E J} < max P{xk E J X il - max piJ
iEI iEI i

JEJ

< max U a,/T k -N
iE I ~j k i, k

and since U,/T 1,

P{xk E I, x EJ}w.
k-I

Applying the "first" Borel-Cantelli Lemma (c.f. [T]) we have

*[ k E 1, Xk+l E J i.o.) - 0, and the theorem follows.

Corollary 4.1 Let {I,J} be a partition of 0 and assume that

(a) there exists d e N such that the d-step transition energy from j

to I equals the transition energy from j to I, for all J E J

(U Uji for all J E J),

(b) every j E J can reach some i E I (max Uj ,
JEJ

-25-
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(c) the transition energy from I to J is greater than the

transition energy from J to I, for all j E J (UIi - max Uj, . 0).
JEJ

Also let U - max UjI ,U - Uri 0, U < T , U,, and Tk - T / log k
JE J

for large enough k E IN. Then P{xk E I a.a.} - 1.

Proof Combine Theorems 4.1 and 4.3.

Remarks on Corollary 4.1 (1) In Figure 2.1 let I - S - {5} J -

{1,2.3,4}. Then U - U15 - 4 and U* - U54 - 4. Hence, unlike condition

(c) of Theorem 4.2, condition (c) of Corollary 4.1 is not generally

satisfied, even when I - S and Q is symmetric.

(2) Note that

U V W min max[O, Uj-UI].U~j Vj WIJ iEI, JEJ,

The corollary to the next theorem gives conditions under which

P{xk E S i.o.) < 1 by setting I - S. By (4.1), these are conditions under

which the algorithm does not converge according to any of our criteria.

Theorem 4.4 Let tI,J} be a partition of 0 and assume

(a) the transition energy from J to I is positive (U.i , 0),

(b) every i E I can reach some j e J (max U )
ie I

Also let e 0 and Tk _< (UjI-E) ! log k for large enough k E N. Then

P(xk E I i.o.} , 1.

Proof From Proposition 4.1(i) there exists a > 0 such that
(kk+l) a

PmJ < U , k E N,

for all ij E 0. Hence for every large enough k E N

P{X n E J. n > k} P(xk E J} 7 min P{xn+ 1 6 J 1 xn -J)
n-k JEJ

P{x, E J} T I - max (nn+)J

0' ~ iE I a

n-k JEJ i I

2: P {x E J) a3 1 -~l

n
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.7V

Since UjI/T > 1 the infinite product converges (to a positive value), and
by (b) P{xk E J) 0 for infinitely many k E N. Hence P{x n E J, n > k1

0 for some large enough k E N, and the theorem follows.

Corollary 4.2 Let {I,J} be a partition of 0 and assume that

(a) the transition energy from some j E J to I is positive

(max 0).
JE J

Also let W - max WjI > . J - {J E J: Wj - W, I - 0 \ J, and
JEJ 

assume that

(b) the transition energy from J" to I* is positive (U" I , 0).

Finally let e ) 0 and Tk _< (W -d) / log k for large enough k E I. Then

P(x k E I i.o.} ' 1.
k*

Proof Observe that W - * * and apply Theorem 4.4 to the partition
{I" ,J }.

In Figure 2.1 let I - S - {5), J - {1,2,3,4}. Then W- W1 - W2 5 - W3 5 -

2 and J - {1,2,31.

We next state a theorem of Hajek's which gives necessary and sufficient

ccnditions for P{xc E S 1 - 1 as k .

Theorem (HaJek) Assume that

(a) i can be reached from J. for all i.J E 0 (Q is irreducible),

(b) if i can be reached from j at energy U then j can be

reached from i at energy U, for all iJ 6 0 and U E R (UiWlj -

Uj+Wj- for all iJ E 0).

Let d -max* VjS* T 0 0, and Tk - T / log k for large enough k E
Jos

.1. Then P{xk E S I-.1 as k-o, iff T > d*.

Proof See (9).

Remarks on Haiek's Theorem (1) In Figure 2.1 we have d" - V1 5 - 3.

(2) In Hajek's paper conditions (a) and (b) are called "strong

irreducibility" and "weak reversibility", respectively. Condition (b) is

satisfied for Q symmetric.

(3) Obviously W < d < U and the equalities hold only in fairly
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trivial cases. Hence under conditions (a) and (b). Hajek's Theorem is

stronger than our Theorem 4.2 and Corollary 4.2 with I - S However, the

conditions under which our results are obtained are different, and in general

weaker than Hajek's. with the exception that condition (c) of Theorem 4.2 can

be true when condition (b) of Hajek's Theorem is false and conversely. Also

we obtain an estimate of the rate for which P{xkE S} I as k .

We close this section by indicating how we can analyze various

modifications of the annealing algorithm by our methods. Such modifications

might include

(i) allowing the Q matrix to depend on time,

(ii) measuring the energy differences Uj-U with random error,

(iII) allowing the temperature Tk to depend on the current state xk -

The important point to observe in modifications such as these is that our

results depend only on the Markov property of the annealing chain {xkkEo

and the asymptotic behavior of its d-step transition matrix {P(k'k+d)}kEIo

as k - for fixed d E IN. In particular, our results are based on

satisfying one or both of the inequalities

lim k Uij/T (k,k+d) 0 (4.19)
ij

k-- PJ (.9

and
I- Uij/T(kkd

IIM k P (k k+d) (4.20)

for appropriate ij E 0. Hence our results are valid for any Markov chain

which satisfies (4.19) and/or (4.20) for appropriate ij E 0. Ofcourse in

general the Uij's are not given by (2.1). and can infact be any

non-negative real numbers (or -), with the exception that in Theorem 4.2 we

require Uij < Uie+U j for certain i,J,Q E 0. We are currently examining

the modifications of the annealing algorithm mentioned above and are also

attempting to extend our results to more general (countably infinite and

uncountable) states spaces.
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5. Conclusion

We have analyzed the simulated annealing algorithm focusing on those

issues most important for optimization. Here we are interested in finding

good but not necessarily optimal solutions. We distinguished between the

finite time and asymptotic behavior of the annealing algorithm. In our

* finite-time analysis we gave a lower bound on the probability that the

annealing chain visits a set of low energy states at some time S k. f or k -

1,2 ..... This bound may be useful even when the algorithm does not converge

and as such is probably our most important result for applications. We are

currently engaged in trying to apply this bound to a specific problem. In

our asymptotic analysis we obtained conditions under which the Annealing

algorithm converges to a set of low energy states according to various

criteria. Ha.ek has recently given necessary and suffioient conditions that

the annealing chain converge in probability to the minimum energy states. We

gave an estimate of the rate of convergence. Our methods apply to various

modifications of the annealing algorithm. We hope to explore some of these

modifications and to extend our results to more general state spaces.

i.1



. . . . . . ..- ~~~V -- E -~ w w - ELI LLIEL I. -. --- - - ---

6. Appendix

Proof of Lemma (i) Without loss of generality we assume k - 1. Then

using the inequality 1+x < eX  for all X E R we have

I k 1 -[ i 5 e x p [ a k - - L . < e x p - k 1. Is b -b k 1

k - IN. (A.1)

Proof of Lemma (ii) Without loss of generality we assume k0 - m0 - 1.

Then using (A.1) and the inequality (x+l)y < xy + y for all x > 1 and 0

< y <1 we have

T ] <eb(m+l)l ae-bkl- a6 bka bm-a
-m+1 - e <ee e

k - m+1,m+2......m E N.

Let

fn (k,) -- e-i +-m)n 1bmla - ..... k, k E IN, n E IN0

Then we can write

k yr - a < eae - bk f(kk) k E IN, n E IN0

m-1 Q M+a

We shall show that for every n E N 0 there exists an *bn E R such that

(k+l-q)n e 1-a nfn(k,2) e an  + buk -. k. kerN,

CA.2)

and consequently

k n k
(k+l-m) - O(k-T) as k--,

as required.

Proof of (A.2) is by induction on n E NO . First consider n - 0. Let

g(x) - ebx /z, x 1 1. Since g' (x) , 0 for large enough x, it follows

that

g bm1- 2- l
f0(k,2) - i g(xl + g(i) + g(m)
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1-a b1 0

- --b = b +!..., Q - 1,.....k, ke IN,

where 5 - (-a)/(1-a) - T/(1-a) , 0. Let [6j be the largest integer < .

Then expanding ebx in a Taylor series and integrating term by term we have

f- (k2 b Ix I dx + eebQ -a

0-a
i-k61

1s b (IFxrTY +e 1-a b e bl-aa--, (1-1) 1,U-6) X-1

1 11+1 b I Q1-a i b e Q1-d

,(la)Tb 4 T

i-L)fiJ+.

e 1-a
0 O e T + bO. Q - 1... kE .

where a- + 1/a)ECLIl)/(L61+1-6)] and b0  
e

Next assume (A.2) is valid for n E IN0  and consider n+1. Summing by

parts (c.f. [10)) we have

q-1
f n+(k,2) - (k+l-)fn(kq) + f n (k ,m )

M-1

an (k+l-Q)n+ e be 1-a + 2bnkn+1 +

< an+ Q + b n+ - 1,... k, k E [N.

if we set an+1 - an(anl) and bn+ - bn(an+2 ). By Induction (A.2) is

valid for all n e N 0.

-... - A. I --
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